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The F204S mutation in adrenodoxin 
oxidoreductase drives salinomycin resistance 
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Abstract 

Salinomycin is a polyether ionophore widely used for the treatment of coccidiosis in poultry. However, the emergence 
of coccidia strains resistant to salinomycin presents challenges for control efforts, and the mechanisms underlying this 
resistance in Eimeria remain inadequately understood. In this study, 78 stable salinomycin-resistant strains were gener-
ated through experimental evolution approaches. Whole-genome sequencing of salinomycin-resistant Eimeria tenella 
isolates revealed single nucleotide polymorphisms (SNPs), with 12 candidate genes harboring nonsynonymous 
mutations identified. To confirm the candidate gene responsible for conferring salinomycin resistance, we leveraged 
reverse genetic strategies and identified a key amino acid substitution (F204S) in adrenodoxin oxidoreductase (EtADR), 
which markedly reduced susceptibility to salinomycin. Our results elucidate the complex interactions among salino-
mycin resistance, parasite fitness, point mutations, and the structure of EtADR, laying the foundation for future studies 
on drug resistance in Eimeria and contributing to the development of targeted control strategies.

Keywords Eimeria tenella, salinomycin, drug resistance, point mutation

Handling editor: Frank Katzer.

*Correspondence:
Xun Suo
suoxun@cau.edu.cn
Xianyong Liu
liuxianyong@cau.edu.cn
1 National Key Laboratory of Veterinary Public Health and Safety; 
Key Laboratory of Animal Epidemiology and Zoonosis of Ministry 
of Agriculture, National Animal Protozoa Laboratory & College 
of Veterinary Medicine, China Agricultural University, Beijing, China
2 Department of Pathogen Biology, Guangdong Provincial Key Laboratory 
of Tropical Disease Research, School of Public Health, Southern Medical 
University, Guangdong, China
3 Key Laboratory of Animal Genetics, Breeding and Reproduction 
of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic 
Improvement, China Agricultural University, Beijing, China
4 Key Laboratory of Animal Biosafety Risk Prevention and Control (North) 
of MARA, Institute of Animal Sciences, Chinese Academy of Agricultural 
Sciences, Beijing 100193, China
5 College of Animal Science and Technology, Guangxi University, 
Nanning 530004, China
6 Department of Clinic Veterinary Medicine, College of Veterinary 
Medicine, China Agricultural University, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13567-024-01431-6&domain=pdf
http://orcid.org/0000-0001-9425-6784


Page 2 of 14Sun et al. Veterinary Research          (2024) 55:170 

Introduction
Coccidiosis is a globally prevalent parasitic disease 
caused by protozoa of the genus Eimeria and poses a sig-
nificant threat to the poultry industry and livestock [1, 2]. 
Current methods for the control and prevention of coc-
cidiosis rely primarily on the use of anticoccidial drugs 
and vaccines [3]. Two major categories of anticoccidial 
drugs, polyether antibiotics and synthetic compounds, 
are widely employed in the poultry industry [4]. However, 
the indiscriminate and excessive use of these drugs has 
led to the emergence of drug-resistant Eimeria strains, 
rendering certain drugs ineffective [5–8]. The presence of 
drug-resistant strains complicates disease control efforts, 
thereby limiting available options for the prevention and 
treatment of coccidiosis. This highlights the urgent need 
for the development of novel anticoccidial drugs with 
unique mechanisms of action to combat drug-resistant 
Eimeria.

A comprehensive understanding of the molecular 
markers and underlying mechanisms of drug resistance 
in Eimeria is crucial for the development of effective 
control measures. Our previous research successfully 
demonstrated that mutated prolyl-tRNA synthetase 
(PRS) confers resistance to halofuginone in Eimeria 
[9]. Additionally, there is evidence linking mutations in 
the cytochrome b gene to resistance against decoqui-
nate in Eimeria [10]. Although only a limited number 
of molecular markers have been identified in coccidia, 
extensive research on other Apicomplexan parasites, 
such as Plasmodium falciparum and Toxoplasma gondii, 
has successfully elucidated multiple molecular markers 
and resistance mechanisms [11–17]. Insights from these 
studies suggest that combining directed evolution with 
whole-genome sequencing could be a powerful strategy 
to identify targets and resistance pathways responsible for 
specific phenotypes in Eimeria. Recently, reverse genetic 
approaches, such as genome-scale CRISPR screens, have 
been developed for parasites to discover candidate muta-
tions [18]. These strategies hold great potential for identi-
fying new targets for anticoccidial drug development and 
for tracking the emergence and spread of drug-resistant 
strains in the field.

Salinomycin, a monocarboxylic polyether antibiotic 
derived from Streptomyces albus, functions by catalyzing 
the exchange of  Na+ for  K+ across biological membranes 
[19]. For decades, ionophores have been the primary 
option for controlling coccidiosis due to their slow resist-
ance development. Salinomycin is considered the least 
toxic ionophore and exhibits broad-spectrum anticoc-
cidial activity against all Eimeria species [1]. Previous 
studies have demonstrated that salinomycin-resistant 
Eimeria strains are prevalent in various regions, includ-
ing the USA and Korea. Additionally, multiple Eimeria 

species have been reported to exhibit resistance to salin-
omycin [1, 20, 21]. The emergence of salinomycin-resist-
ant strains in various regions has significantly reduced 
drug effectiveness [20–28]. Some studies have suggested 
a potential association between salinomycin resistance 
and ABC transporters, a group of membrane proteins 
involved in the efflux of various substances [29]. Unfor-
tunately, recent studies on anticoccidial drug-resistant 
Eimeria have focused primarily on transcriptomic and 
epidemiologic investigations [27, 28, 30–33].

Despite the challenges that exist in studies of resist-
ance mechanisms in Eimeria, here, we elucidated a point 
mutation in adrenodoxin oxidoreductase (EtADR) that 
reduces the susceptibility of Eimeria tenella to salinomy-
cin. These findings shed light on the molecular changes 
associated with salinomycin resistance in E. tenella and 
represent a significant step toward understanding the 
detailed resistance mechanism of this important drug. 
Moreover, our research offers potential avenues for 
developing effective strategies to combat drug resistance 
in Eimeria infections.

Materials and methods
Animals and parasites
Acre Arbor broilers were purchased from Beijing Arbor 
Acres Poultry Breeding (Beijing, China), and chickens 
were used for proliferation, drug-resistant strain selec-
tion and candidate gene verification. All the birds were 
given a drug-free diet and water ad  libitum unless the 
experiment was performed. E. tenella Houghton was 
maintained in the laboratory, and the procedures for 
oocyst collection, purification and sporulation were car-
ried out as described in previous work [34]. Cervical dis-
location, which aims to cause rapid loss of consciousness 
in chickens, was performed for the chickens necessary 
for sacrifice.

Selection and characterization of salinomycin‑resistant 
strains
Two different approaches were used in our experiment 
to induce salinomycin-resistant strains. To obtain resist-
ant strains rapidly, 300 1  day-old chickens were equally 
divided into two groups. The chickens in group 1 were 
inoculated with 500 sporulated wild-type E. tenella 
Houghton, while the chickens in group 2 were fed 60 mg/
kg salinomycin (working concentration) during the 
experiment. The detailed procedures were performed as 
previously described [9].

To obtain intermediate strains during induction, the 
wild-type strain was induced by gradually increasing the 
concentration of salinomycin from 20 mg/kg to 240 mg/
kg over 20 passages, and the resistant strain was com-
pletely resistant to 240  mg/kg (fourfold) salinomycin. 
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After three generations of relaxed selection, the resistant 
strains were tested for the resistant phenotype. Compara-
tive studies on the reproducibility of salinomycin-resist-
ant and salinomycin-sensitive strains incorporating 
modifications based on previous research have been con-
ducted [9].

Genome sequence sample preparation and analysis
Parasites of the wild-type, intermediate, and salinomy-
cin-resistant strains were extracted via cetyltrimethylam-
monium bromide (CTAB) as previously reported [35]. 
The resulting whole-genome sequencing libraries were 
normalized and sequenced via the Illumina HiSeq-3000 
platform as paired-end reads extending 150 bases from 
both ends of the fragments. Clean data were aligned to 
the E. tenella Houghton reference genome (pEimTen1.1) 
via BWA mem under the default parameters. The 
Genome Analysis Toolkit GATK v4 was used to call SNPs 
and combine vcfs with the default parameters [36]. The R 
package QTLseqr was subsequently used for ΔSNP index 
data visualization. The detailed methods were described 
previously [37]. The WGS data are available in the NCBI 
SRA database under accession number PRJNA1012853.

Plasmid construction
His-candidate gene-EYFP-Actin All the overexpres-
sion plasmids used in this study were derived from 
HCYA (eCas9-NLS-2A-YFP), and the Cas9 position was 
replaced with different candidate genes. If the length of 
the candidate genes exceeded 2000 bp, P2A was inserted 
between the candidate gene and EYFP. For candidate 
genes shorter than 2000 bp, Flag-Linker was used to con-
nect the candidate genes and EYFP.

U6-sgRNA-5HR-mCherry-3HR To generate a homolo-
gous recombinant plasmid, a gRNA was designed to tar-
get the N-terminal region of the candidate gene (ToxoDB: 
ETH2_0637800), and the gRNA was cut within a 50-bp 
window upstream of the start codon. The plasmid also 
harbored the fluorescent protein mCherry, which was 
integrated into the 5’ end of the target gene. The strategy 
was designed as previously described [38]. All primers 
used are provided in Additional file 7.

All the fragments and the T-vector in all the plas-
mids were linked via a seamless assembly strategy 
 (pEASY®-Uni Seamless Cloning and Assembly Kit).

Parasite transfection
The transfection procedures were performed with the 
SnaBI restriction enzyme as described in a previous 
report [9, 39–41]. To generate overexpressing parasites, 
parasites were transfected with different overexpression 
plasmids and then mixed. Mixed parasites were subse-
quently inoculated into 15 2 week-old chickens, and the 

wild-type group and mutation group were fed separately. 
Throughout the entire experiment, the chickens were fed 
120 mg/kg salinomycin. To generate homologous recom-
binant strains, the stable eCas9-expressing E. tenella 
line was transfected with the homologous recombinant 
plasmid.

To enrich the positive transgenic parasites, positive 
sporocysts were collected through flow cytometry and 
then inoculated with new chickens under salinomycin 
(120 mg/kg) selection.

Indirect immunofluorescence assay (IFA)
IFA was performed to characterize the location and 
expression of the candidate gene via the following pro-
tocol. The transgenic sporozoites were extracted and 
purified through a cellulose filter and then infected with 
HFF cells (human foreskin fibroblasts) for approximately 
4  h, after which PBS was used to wash out uninvaded 
sporozoites. Intracellular sporozoites were fixed with 
4% paraformaldehyde (PFA), permeabilized with 0.25% 
Triton-100 for 15 min, and then incubated with 3% BSA 
for 15 min at 37 ℃. To verify the overexpression of para-
sites and homologous recombinant parasites, GFP-tag 
rabbit polyab (1:200), anti-mCherry (ab183628, 1:100), 
Cy3-conjugated goat anti-mouse IgG (1:200), FITC-con-
jugated goat anti-rabbit IgG (1:200) and Hoechst 33258 
(1:100) antibodies were used. The monolayers were 
observed with a Leica confocal microscope (Leica, YCS 
SP52, Germany) at 633 × magnification, and high-content 
imaging and analyses were performed with LAS AF lite 
2.2.0 software.

Western blot
For western blotting, total protein was extracted from the 
parasites via a standard procedure. GFP-tag rabbit polyab 
(1:500), anti-mCherry antibody (1:1000), horseradish per-
oxidase (HRP)-conjugated goat anti-mouse IgG (1:2000) 
and HRP-conjugated goat anti-rabbit IgG (1:2000) were 
used to detect the expression level of the candidate gene. 
The actin of E. tenella was used as a control.

Phylogenetic analysis of ADR
Protein sequences containing the pyr_redox domain were 
obtained for representative apicomplexan genomes from 
NCBI on the basis of their annotation with the SMART 
domain. The homologous proteins were aligned via 
ClustalW, and the phylogenetic tree was generated via 
the neighbour‒joining method [42]. Bootstrap values 
were calculated for 10 000 trials. Visualizations were gen-
erated via Chiplot.
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Molecular docking
All structural superposition and preparation of figures 
were performed via PyMOL. The 3D models of the pro-
teins were predicted via AlphaFold2, and the Ramachan-
dran plot was analysed via PyMOL. To characterize the 
active pockets, the 3D structure of ADR was prepared 
by adding bond orders, hybridization, explicit hydro-
gens, charges, and Tripos atom types. The molecular 
docking data were analysed by AutoDock, and poses 
showing a similar conformation (root mean square devia-
tion [RMSD] of < 2.0 Å), as assessed by AutoDock, were 
retained, and the first-ranking pose was chosen for fur-
ther analysis.

Statistical analysis
GraphPad Prism 8.0 was used to generate graphs and 
analyse the statistical data. All the data were analysed 
with two-tailed Student’s t tests. p < 0.05 was considered 
to indicate statistical significance.

Results
Obtention of salinomycin‑resistant strains of E. tenella 
by experimental evolution
To obtain salinomycin-resistant strains, we initially 
employed an accelerated experimental evolution method 
to select resistant strains [9]. Consistent with previ-
ous findings, the peak oocyst output peak in the group 
treated with salinomycin occurred at approximately 
37 dpi (Figure 1A, Additional file 1). To amplify the pop-
ulation of salinomycin-resistant strains, the second experi-
ment was conducted, resulting in the collection of 80 
samples. To stabilize the resistant phenotype, the oocysts 
were propagated at a concentration of 120  mg/kg, sub-
jected to three passages under relaxed selection, and then 
exposed to a high concentration of salinomycin (Fig-
ure 1B). Additionally, to monitor the dynamic emergence 
of the salinomycin-resistant phenotype, a dose-escalation 
process was implemented, leading to the acquisition of 
resistant strains (Figure 1C, Additional file 2). After selec-
tion, a total of 78 strains were collected.

To evaluate the reproductive capacity of salinomy-
cin-resistant strains, we compared the oocyst output 
of resistant and sensitive strains, both in the presence 
and absence of salinomycin (120  mg/kg). The results 
revealed no significant difference in oocyst production 
between the salinomycin-treated resistant strain and the 
untreated sensitive strain (Figure  1D). In contrast, no 
oocysts were detected in the sensitive group under drug 
pressure (Figure  1D). Moreover, we generated oocyst 
output curves to compare the endogenous development 
of different strains, and the results were consistent with 

the aforementioned data (Figure  1E). Overall, we suc-
cessfully utilized two experimental evolution strategies to 
obtain 78 stable salinomycin-resistant strains.

Identification of candidate genes associated 
with salinomycin resistance in E. tenella by resequencing 
and SNP analysis
Research has demonstrated that pathogens are exposed 
to a range of drug concentrations, which creates varying 
selective pressures. When drug concentrations are suf-
ficiently high to inhibit pathogen growth, the presence 
of preexisting resistant mutants becomes crucial. The 
rate at which these resistant mutants become enriched is 
influenced by factors such as their prevalence within the 
population and their fitness levels [43].

Whole-genome sequencing was used to investigate the 
candidate mutations among different generations. Fol-
lowing a selective sweep across the entire genome, ben-
eficial mutations become fixed, leading to a reduction 
in genetic diversity around the selected locus [44]. The 
ΔSNP index was used to analyse the allele frequency in 
the resistant and intermediate generations across the 
genome via a 50 kb sliding window, with loci exhibiting 
high allele frequencies among intermediate generations 
excluded (Additional file  3 and Additional file  4). Addi-
tionally, heterozygosity (Hp) data were used to assess the 
diversity of candidate loci. Only candidate loci with a 
mutation frequency > 0.95 and Hp < 0.5 were considered, 
and intergenic regions were excluded. Through this strin-
gent filtering process, only four candidate loci on two 
chromosomes (HG994966 and HG994970) were identi-
fied (Figures 2A–C). From these candidate regions, non-
synonymous mutations were further analysed, leading 
to the identification of 12 candidate genes (Table 1). The 
consistent results obtained from both the ΔSNP index 
and Hp data suggest that one or more of these 12 genes 
may be associated with salinomycin resistance.

Validation of candidate genes conferring resistance 
to salinomycin in E. tenella by pool transfection
To validate the potential role of candidate genes in con-
ferring salinomycin resistance, we employed a pool-
transfection approach to assess the involvement of 
specific salinomycin resistance target genes among these 
12 candidates (Figure 3A). Overexpression plasmids con-
taining either the mutated or the wild-type (sensitive) 
versions of these genes were constructed (Figure 3B). To 
monitor the growth of the transgenic parasites, we used 
a combination of salinomycin selection and fluorescence 
markers to determine whether the mutations in the can-
didate genes conferred resistance to the drug (Additional 
file 5).
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As expected, transgenic parasites harbouring the 
mutant gene exhibited fluorescence after salinomycin 
selection, and the fluorescence was significantly enriched 
in the second generation (Figure  3C). Specific primers 
were designed for each plasmid, and genomic DNA was 
extracted from the  1st and  2nd progeny to confirm the 

presence of the target gene(s) (Figure 3D). On the basis 
of these data, the ETH2_0637800 gene, annotated as 
adrenodoxin oxidoreductase (EtADR), harboring a single 
mutation site, T611C, resulting in an amino acid substi-
tution, F204S, may confer resistance to salinomycin in 
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group (group 1, gray line) or salinomycin-treated group (group 2, green line). B Workflow used to obtain stable salinomycin-resistant strains. C 
Selection of salinomycin-resistant strains via a dose-escalation strategy. RS, relaxed selection. D Comparison of the oocyst output between groups 
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had three replicates. ***p < 0.001. E Oocyst output curves of birds infected with salinomycin-resistant or salinomycin-sensitive strains. Each bird 
was inoculated with 500 fresh sporulated oocysts, and the resistant group was fed 120 mg/kg salinomycin throughout the entire experiment, 
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E. tenella. Therefore, we speculated that mutated EtADR 
may lead to salinomycin resistance in Eimeria.

Single‑point mutation (T611C) in EtADR decreases 
salinomycin susceptibility in E. tenella
These results suggest a potential relationship between 
EtADR and salinomycin resistance. To further investigate 
whether the T611C mutation in EtADR decreases sus-
ceptibility to salinomycin in E. tenella, we conducted a 
series of analyses. Multiple sequence alignments revealed 
that this protein is conserved among apicomplexan para-
sites and contains a single domain, pyr_redox, which is 
an NADH-binding domain primarily responsible for the 
oxidation‒reduction process of the protein [45] (Fig-
ures  4A and B). We then performed molecular docking 
analysis to examine whether the point mutation intro-
duced by the T611C mutation affected the docking form 
of EtADR (Additional file  6). Interestingly, the mutated 
residue was located in the “active pocket” of the protein, 
suggesting that this mutation could directly influence the 
binding and activity of EtADR (Figure 4C). On the basis 
of these results, we speculate that the T611C mutation 
in EtADR may contribute to salinomycin resistance in E. 
tenella.

EtADRMut confers salinomycin resistance in E. tenella, 
as validated through overexpression and homologous 
recombination strategies
To further establish the functional link between the point 
mutation and the resistant phenotype, we introduced the 
point mutation into the wild-type strains. First, we con-
structed an overexpression transgenic strain harboring 
EtADRMut (Figure  5A). We employed a combination of 

drug selection and fluorescence-based screening meth-
ods to select positive transgenic strains that became 
stable after five successive generations under selec-
tive pressure. To validate the expression and subcellular 
localization of the ADR protein, we performed IFA and 
Western blot analysis (Figures 5B and C). We then con-
ducted a comparative analysis to assess the reproductive 
capacity of the transgenic strains in comparison with 
that of the wild-type strains in the presence or absence 
of salinomycin (120  mg/kg). Our results revealed no 
significant difference in reproductive capacity between 
the overexpression strain treated with salinomycin and 
the wild-type strain without drug exposure (Figure 5D). 
Consistent with these findings, the oocyst output curve 
of the transgenic strains treated with salinomycin closely 
resembled that of the wild-type strain without drug expo-
sure (Figure 5E).

Additionally, we employed another genome-editing 
approach based on CRISPR/Cas9 technology to intro-
duce nonsynonymous SNPs into the native loci of the 
wild-type parental line (Figures 6A and B). Specific prim-
ers were designed to verify homologous recombination 
(Figure 6C). The  EtADRMut protein, identified by tagging, 
was detected only in the transgenic strains via immuno-
fluorescence or immunoblotting, indicating that we suc-
cessfully integrated the mutant gene into the genome of 
the wild-type parasite strain (Figures 6D and E). To inves-
tigate the phenotype of these transgenic strains, we com-
pared the oocyst output and endogenous development 
between the parental and transgenic strains. The results 
demonstrated that the transgenic strains remained stable 
even under drug pressure (Figures 6F and G). These find-
ings provide compelling evidence that the introduction 

Table 1 Whole‑genome sequencing identified point mutations in 12 candidate genes 

Chromosome Gene ID Annotation No. of SNPs/
nonsynonymous

Mutations Amino acid change

HG994966 ETH2_0636700 ABC transporter 11/5 A3073G, A3062C, C3050T, 
C2993T, G2343C

T1025, G102A, T1017, T998I, 
M781

ETH2_0637000 Aldehyde dehydrogenase 
family

4/1 G1108C V1370L

ETH2_0637500 Hypothetical protein 7/2 A1138G, A1119T I380V, L373P

ETH2_0637600 Hypothetical protein 1/1 G991A G331L

ETH2_0637800 Adrenodoxin oxidoreductase 1/1 T611C F204S

ETH2_0638400 Hypothetical protein 6/2 G1848T, A602G M616I, A201S

ETH2_0638700 Hypothetical protein 2/2 A86G, G56A A29S, S18A

HG994970 ETH2_1005600 Hypothetical protein 6/1 G1912A V163M

ETH2_1004500 Hypothetical protein 7/2 A2711G, G2671A L904R, V891I

ETH2_1045600 Hypothetical protein 7/5 C1742T, T1696C, A1694T, 
C1683G, T1670C

S581L, S566P, H565L, H561G, 
I557T

ETH2_1004800 ABC transporter – Deletion –

ETH2_1045800 Hypothetical protein 6/2 G694A, T698C A232T, V233A
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of single-point mutations in the original resistant popu-
lations can significantly decrease the susceptibility of E. 
tenella to salinomycin.

Discussion
Currently, drug resistance continues to emerge, diversify, 
and spread in Eimeria [2]. Although the impact of antico-
ccidial drugs on epidemiology has been largely studied, 
interest in the molecular mechanisms of drug resistance 
has only recently gained traction within the scientific 
community [9, 22, 31–33]. Notably, other apicompl-
exan parasites, Plasmodium and Toxoplasma, exhibit 
molecular markers of different drug resistance [11, 12, 
18, 43]. However, only a few molecular markers have 

been described in Eimeria, such as the mutated EtcPRS 
and cytochrome b [9, 10]. In our study, we employed a 
combination of forward and reverse genetic approaches 
to pinpoint that EtADRMut is correlated with salinomycin 
resistance in Eimeria. Together, our research provides 
new insights into the molecular mechanisms underlying 
the development of salinomycin resistance.

Previous studies examining SNPs across different 
strains of Toxoplasma and Plasmodium—which were 
passaged an unknown number of times in various labo-
ratories—have suggested that minimizing irrelevant 
mutation site interference requires either increasing 
the number of samples or tracking dynamic changes 
by gradually increasing drug concentrations to derive 
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parasites with elevated drug tolerance [12, 38]. Research 
conducted on the model organism Escherichia coli has 
demonstrated that strong selective pressures, even under 
homogeneous conditions, lead to spontaneous muta-
tions that often confer a fitness advantage and eventually 
become fixed in the population [46]. Our study employed 
two experimental evolution strategies to screen for drug-
resistant strains. The traditional gradient induction strat-
egy helps clarify the dynamic changes in the mutation 
frequency of resistance loci during the induction process, 
whereas the rapid induction strategy facilitates the quick 
selection of multiple resistant strains in a short period. 
Genomic analysis of these resistant strains has allowed 
for the rapid elimination of confounding loci [9, 11, 12]. 
On the basis of these data, only 12 candidate genes were 
screened.

In Eimeria, traditional transfection techniques suffer 
from in  vivo screening and low-efficiency transfection 
challenges. To address these limitations, we developed 
a novel transgenic strategy using pool-transfection with 
12 mutated-overexpression plasmids. This approach 

significantly reduced the number of chickens required 
and saved time. To further investigate the importance 
of point mutations in EtADR, we introduced this muta-
tion into a wild-type background via CRISPR/Cas9 [47, 
48]. This outcome is similar to the phenotype observed 
in the EtADRMut overexpression strain, in which “resist-
ant” lines presented significantly decreased suscepti-
bility to salinomycin. While traditional forward and 
reverse approaches can be time-consuming, they may 
fail to detect minor mutations or those that negatively 
impact parasite fitness and can be used only for positive 
selection schemes. Recently, whole-genome CRISPR 
screening technology has provided new opportuni-
ties for studying different phenotypes across various 
species. This technology could be applied to emerging 
model organisms with interesting biological properties 
or biotechnological applications, ranging from mam-
mals to microorganisms [49]. However, in Eimeria, 
low transfection efficiency and in  vivo screening pose 
challenges for CRISPR screening. Therefore, improving 
the technology for CRISPR screening in Eimeria would 
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offer a versatile approach for large-scale functional 
analysis, bridging the gap between phenotypes and can-
didate genes. Additionally, enhancing CRISPR-based 
screens in Eimeria could help uncover drug resistance 

mechanisms and aid in the design of new therapeutic 
targets.

In summary, our study paves the way for further 
exploration of drug resistance in Eimeria and identi-
fies a novel molecular marker for anticoccidial drugs. 
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The discovery of this marker facilitates the rapid iden-
tification of resistant strains in the field and supports 
the development of new anticoccidial drugs targeting 
this site, ultimately improving the effectiveness of clini-
cal prevention and control strategies. These findings 
provide a solid foundation for future research on drug 
resistance in Eimeria and contribute to the formulation 
of strategies to address this escalating challenge.
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